

2th European Doctoral School on Metamaterials

Modelling and Application of Metamaterials, Metasurfaces and High Impedance Surfaces

Siena, Italy, November 21-25, 2005

Program:

Monday 21

Hour	Торіс	Lecturer
8:00 - 9:00	Geometries of radiators for enhanced broadside (boresight) radiation: high/low permittivity/permeability metamaterial slabs, low/high refraction index metamaterial slabs, Fabry-Perot cavities (FPC) with partial reflective surfaces (PRS) and EBG superstrates. Background for enhanced radiation at broadside.	F. Capolino
9:00 - 10:00	Transmission-line analysis of planar radiators; excitation of directive structures; conditions for maximum broadside power density.	P. Burghignoli
10:00 -10:15	Coffee break	
10:15 - 11:00	Excitation and waves excited in planar metamaterial and FPC structures: space wave, surface waves, leaky waves; enhanced directivity and leaky waves. Radiation bandwidth of directive radiators. Simple engineering formulas.	P. Burghignoli
11:00 - 12:00	Case study. Enhanced radiation by using a grounded low-permittivity metamaterial slab (grounded plasma slab)	G. Lovat
12:00 - 13:30	Lunch	
13:30 - 14:30	Study of combinations of high/low permittivity-permeability metamaterial slabs	G. Lovat
14:30 - 15:30	Comparison between PRS-based and metamaterial-based radiators with enhanced directivity: enhancement, bandwidth, feeds, etc.	F. Capolino
15:30 - 15:45	Coffee break	
15:45 - 16:30	Assignments and self-study: solutions of simple problems. Assignments for the next day. Study of important published papers.	M. Albani, P. Burghignoli, F. Capolino, G. Lovat
16:30 - 17:30	Design of an enhanced-directivity radiator, feed and structure. A dual polarization sparse array antenna with high directivity. Impedance bandwidth.	M. Albani

Tuesday 22

Hour	Торіс	Lecturer
8:00 - 10:00	Assignments and self-study:	M. Albani,

Virtual Institute for Artificial Electromagnetic Materials and Metamaterials METAMORPHOSE VI AISBL European Doctoral Programmes on Metamaterials – Euprometa

	Study of important published papers. Student presentations	P. Burghignoli, F. Capolino, G. Lovat
10:00 - 10:15	Coffee break	
10:15 - 12:00	Design, fabrication and measurement of Metasurfaces for highly directive antennas	A. Feresidis
12:00 - 13:30	Lunch	
13:30 - 14:30	Theory of basic HIS, part 1. Introduction – what are high-impedance surfaces? Concept of impedance boundary conditions (IBC). Plane-wave surface impedance Zs for 2D periodic arrays. Grid (sheet) impedance Zg. Averaged boundary conditions for wire grids. General relations for Zs, Zg, and reflection coefficient. Transmission-line approach for Zs, restrictions. Basic properties of Zs and Zg. A concept of basic HIS. Drawbacks of the surface impedance concept. Simple and two-level mushroom structures (MS).	C. Simovski
14:30 - 15:30	Theory of basic HIS, part 2. Quasistatic model of MS. Dynamic model of MS: wire grid theory, approximate Babinet principle, grid impedance of the patch array, wire medium (WM) theory, input impedance of the metal-backed layer of WM, analytical calculation of Zs.	C. Simovski
15:30 - 15:45	Coffee break	
15:45 - 17:30	Assignments and self-study: To calculate Zs of MS with hexagonal patches (normal incidence). To calculate Zs for two-level mushroom structures using the combination of the quasistatic model (to find Zg) and transmission-line approach to find Zs (normal incidence). To compare with purely quasistatic model. To study a journal paper about the influence of the ground plane to Zg	S. Tretyakov, C. Simovski

Wednesday 23

of the patch array.

Hour	Торіс	Lecturer
8:00 - 10:00	Theory of basic HIS, part 3. Surface impedance of MS for arbitrary incidence. Comparison with simulations and experiments. Problem of the angular stability of the resonance. HIS based on self-resonant grids (SRG): Anderson's theory of SRG, Zs of HIS based on SRG. Angular stabilization of the resonance. Microstrip model of Itoh's HIS (UC PBG surface over the ground plane). Dynamic model of Itoh's HIS. Summary of formulas for Zg and Zs for basic HIS.	C. Simovski, S. Tretyakov
10:00 - 10:15	Coffee break	
10:15 - 12:00	Plenary discussion – presentation of self-study results	C. Simovski, S. Tretyakov
12:00 - 13:30	Lunch	
13:30 -14:30	Exotic HIS: HIS of C-particles (Diaz), HIS of Pi-particles (Simovski), HIS of L- loaded wires (Belov, Simovski, Tretyakov), HIS of helices (Sievenpiper)	C. Simovski
14:30 -15:30	FSS theory, analysis and design. FSS for HIS. measurement and testing, guidance with modeling, Method of Moments for studying HIS. Examples.	G. Goussetis
15:30 -15:45	Coffee break	

Virtual Institute for Artificial Electromagnetic Materials and Metamaterials METAMORPHOSE VI AISBL European Doctoral Programmes on Metamaterials – Euprometa

15:45 -16:30	Measurement and testing, guidance with modeling, Method of Moments for studying HIS. Examples.	G. Goussetis
16:30 -17:30	Assignments and self-study: Hands-on exercises, demonstration.	G. Goussetis

Thursday 24

Hour	Торіс	Lecturer
08:00 - 10:00	The pole-zero matching method for the dispersion analysis of thin HIS. 1-Basic physics and simplified analysis models: FSS properties; Equivalent circuit analysis: Homogenization of the boundary conditions based on Floquet wave expansion. 2- Rigorous integral equation analysis; Spectral domain MoM analysis; Rigorous dispersion equation; Multipole network and accessible mode; "reduced" dispersion equation;	S. Maci
10:00 - 10:15	Coffee break	
10:15 - 11:00	The pole-zero matching method for the dispersion analysis of thin HIS. 3. Pole-zero matching method- Properties of the FSS admittance matrix eigenvalues; Foster's properties; Pole-Zero and Pole-Residue Representations.	S. Maci
11:00 - 12:00	Assignments.	A. Cucini, S. Maci
12:00 - 13:30	Lunch	
13:30 - 15:30	Design of HIS, fabrication, measurements. Miniaturization issues. Examples of cell-phone antennas integrated with HIS. Example of patch antennas and microstrip line resonators with HIS. Assignments.	A. Feresidis
15:30 - 15:45	Coffee break	
15:45 -16:30	Assignments and self-study: To calculate Zs of MS for oblique incidence. To calculate Zs for two-level mushroom structures using the known Zg for normal incidence and known angular dependence of Zg for MS. Oblique incidence. To compare with purely quasistatic model. To study a journal paper about influence of Zs to far- and near-field patterns and a journal paper about HIS with self-resonant grids.	C. Simovski, S. Tretyakov
16:30 - 17:30	Some applications of HIS. Magnetic-wall regime (constructive interference) and EBG regime (suppression of surface waves). Problem of HIS with angle-independent resonance for complex angles. Shaping antenna pattern using HIS in the regime of resonant and moderate impedances. HIS as an artificial magnetic layer. Suppressing cross-talk and leaky waves in microstrips and coplanar lines. All-angle thin absorbing layers.	S. Tretyakov

Friday 25

Hour	Торіс	Lecturer
8:00 - 10:00	HIS as EBG. Surface waves on mushroom structures, theory, simulations, experiment.	C. Simovski, S. Tretyakov

Virtual Institute for Artificial Electromagnetic Materials and Metamaterials METAMORPHOSE VI AISBL European Doctoral Programmes on Metamaterials – Euprometa

	Primitive model and self-consistent model. Restrictions of IBC for surface waves. Bulk waves inside the structure: Transmission-Line and effective medium models. Backward waves and resonator mode. Role of vias. Surface waves on SRG	
10:00 - 10:15	Coffee break	
10:15 - 12:00	Plenary discussion – presentation of self-study results	C. Simovski
12:00 - 13:30	Lunch	
13:30 - 15:30	Artificially hard and soft surfaces realized by using printed dipoles and slots; hard and soft waveguides; compact resonators; quasi TEM waveguide; leaky wave antennas; array element decoupling.	A. Cucini
15:30 - 15:45	Coffee break	
15:45 - 17:30	Assignments and self-study	A. Cucini, S. Maci